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Abstract—A new method is presented for analysis of wave propagation in random particulate
viscoelastic composites. The method incorporates both the scattering effect and viscoelastic losses
as well as the Kramers-Kronig relationships valid for any casual linear system. Explicit expressions
for the attenuation and dispersion are given and compared with available experimental data.

1. INTRODUCTION

The recent appearance of five papers[l-5] devoted solely to the frequency-dependent
response of disordered composites clearly indicates the increasing interest in this topic. The
work of Gaunaurd and Uberall{l] made use of the method due to Ament[6] whereas
Kligman, Madigosky, and Barlow([2] employed a slightly different approach due to
Chaban([7]. The essential procedure in both of these works is based on equating the
scattered field in the composite at hand to that due to a sphere made of the effective
homogeneous material. A different approach to the problem was taken by Junger (3]. His
method can be viewed as a dynamic analog of the mixture rule of Reuss, well-known in
the static analysis of composites. Two other papers, by Kinra er al.[4] and by Kinra and
Anand (5], reported experiments with an epoxy-glass particulate composite. While similar
studies were published previously (see[8-9]), this work appears to be the first sound
experimental investigation of harmonic wave propagation in particulate composites.

The method, systematically presented in this paper, is an extension of the approach
briefly outlined. by Beltzer[10] for the case of elastic porous media. The results obtained
in [10] were shown to agree with those of Junger[3]. Section 2 of the present paper deals
with deducing of the basic equations for the general case of a viscoelastic particulate
composite. The approach is based on combining the scattering analysis with the
Kramers—-Kronig (K-K) relationships. In Section 3, we consider a viscoelastic matrix with
the linear law of attenuation. Explicit results for dispersion and attenuation in the
composite are given and compared with experiments.

2. BASIC EQUATIONS

The theories presented in [1, 2, 6, 7] take equivalency of the scattering in the composite
and that in an “effective sphere” to be the single criterion for identification of the effective
parameters. Both attenuation and dispersion are deduced solely from the scattering
analysis. It seems more logical, however, that in addition to scattering, some general
properties of the linear systems should be taken into account in formulating the effective
medium. The appropriate method is given herein.

Let us consider harmonic wave propagation (with frequency w) in an isotropic medium
defined by its viscoelastic compliance J(w)=J(w)+ i/{w) and density p. The
Kramers—Kronig relationships, valid for any casual linear system, and the associated links
imposed between J(w) and J{w) were derived and rederived many times (see, e.g.
Ben-Menachem and Singh[11] and O'Donnell et al.[12]). In particular, they yield the
following result
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where P denotes the Cauchy principal value. Let us introduce the complex wave number.
K(w) defined as

K(w) = K(w) + iK{w) = w[pJ (w)]'? (2)
K(w) = w/c(w), K{w) = a2(w) 3)

where c(w) is the dispersive phase velocity and a(w) is the attenuation. In the almost
forgotten paper of Futterman[13], it was shown that the K-K relationships can be also
formulated in terms of the refraction index, n(w), given by

n(w) = n{w) +in(w) = K(w)/(w/c) (4)

where ¢, is the nondispersive limit of the phase velocity occurring at low frequencies. We
shall need only one of his equations similar to eqn (1)

(1)12'_(1)

2w * nlw
n{w) = “‘H‘Pf —*(_—L)-Edwl; (n{o0) = 0). (5)
0
Recently O’Donnell er al.{12], making use of the technique due to Bode[14)}, pointed
out that for intervals at which both J.(w) and J{(w) are slowly varying functions (no sharp
resonances), eqn (1) yields the following approximate relationship:t

J{w) = —nw(dJ(w)/dw)/2 (6)
In view of the similarity between eqns (1) and (5), it follows that
n{w)~ —rw(dn(w)/dw)2. (N

We proceed now with application of the presented results to the dynamics of random
heterogeneous media. Let us consider a material consisting of a low-loss viscoelastic matrix
with a completely random distribution of spherical perfectly elastic inclusions. The typical
radius of the inclusions is denoted as a and the mean interinclusion separation as S(S » a).
No other information is available on the geometry of the composite. The volume fraction,
¢. and S are related by {2]

¢ = (4na’/3)/S°. (8)

Decay of a disturbance propagating in such a medium is caused by the attenuation in a
viscoelastic matrix, o, (w), and that due to scattering by the inclusions, a,{(w). According
to Kuster and Toks6z[15], the effective total attenuation is given by

a(w) = n{wlw/c) = aw) + 2, (w). 9)

The first term, a(w), the characteristic of the matrix, is assumed to be known, whereas
the explicit expressions for a,(w) were given in the works of Waterman and Truell[16] and
Yamakawa(17]. In particular, the Yamakawa result, valid for a dilute suspension, can be
cast in the form

a(w) = 3¢/(8na’)y (10)

where 7y is the scattering cross section of a single inclusion. The explicit low-frequency
approximation for o, (w) will be given in the next section.

Now one observes that eqns (10), (9) and (5), as well as eqns (10), (9) and (7), constitute
a closed system which allows determination of the refraction index, n(w). Hence, the
complex wave number K(w), can also be found via eqn (4) if the nondispersive

tAlthough no estimates of the accuracy are given in [14} it seems that eqn (6) is of an asymptotic nature.
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low-frequency velocity ¢, is known. Fortunately, extensive literature exists on effective
non-dispersive (static) behavior of disordered composites. Most of the results are almost
identical in a dilute suspension limit (small volume fraction of inclusions, ¢ ). In particular,
according to {2] (see also [20])

co’ = (A9 + 21)/[(1 — $)p) + dp,)] (1)

- ;\- + 2/3#] - ;tz - 2/3#2
+ 2ug= (4 + 2u)X 1 + 39| =
Aﬂ !10 ( 1 pl){ ¢[: 3A2+2#2+4#1

+ _2_9 . ul.(”l — 1) ]}‘I (12)
3 w(16p; + 64)) + p(14y, + 94;)

with p, A and u denoting density and the elastic Lame’ parameters, respectively and the
subscripts 0, 1 and 2 standing for the effective medium, matrix, and inclusion. For moderate
magnitudes of the volume fraction, ¢ ~ 0.2-0.4, more accurate results due to Datta[18]
or Chen and Acrivos[19] should be applied.

In the following section, we will focus on experimental investigations of wave
propagation in a viscoelastic particulate composite presented in [4, 5] and will compare
them with the present theory.

3. EXPERIMENTS AND THEORY

Very recently Kinra et a/.[4] and Kinra and Anand[5] reported on experimental studies
of wave propagation in a disordered composite consisting of an epoxy matrix filled with
glass spheres. The densities of the constituents are given by p, = 1.180 g/cm’
p,=2.492 g/cm® and the wave velocities by ¢, =2.54 x 10°cm/s; ¢,;p = 1.16 x 10° cm/s;
€3 = 5.28 x 10° cm/s; 55 = 3.24 x 10° cm/s, where the subscript a stands for P-waves and
B for S-waves. The experiments showed that the inclusions can be viewed as purely elastic
ones whereas the losses in the matrix can be approximated by a linear law

a(w)=mw (w=0) (13)

where m is a constant (m = 0.456 - 10 ~%/2n sec/cm). The dispersion and attenuation were
measured for frequencies in the interval 0.3 — 5 MHz. The obtained data show no explicit
resonances, at least for the Rayleigh region |Ka| < 1.

The law given by eqn (13) is widely employed to model viscoelastic losses. However,
it is usually overlooked that eqn (13) leads to infinite value of wave velocity, unless a cut-off
frequency, ¢, is introduced. Discussions of this interesting effect can be found in the works
of Futterman{13] and Knopoff and MacDonald[21]. Thus, this equation should be
replaced by the Futterman law containing two experimental constants, m and ¢

a(w)=m(w); w=c¢

(14)

a(w)=0; w <€

where ¢ # 0. Futterman indicated that due to the logarithmic dependence between the
phase velocity c(w) and ¢, only an approximate estimate of ¢ is needed. Since ¢ is a typical
frequency of the interval at which dispersion-attenuation can be neglected and is located
below the region of interest, it follows that for the discussed experiments ¢ ~ 10°sec ~'. For
this magnitude of frequency, the dimensionless wave number, K,,a = wa/c,,, equals
~ 0.06. Since c,, given by eqns (11) and (12), arises (see {2, 15]) as the limit of the effective
speed when K\,a —0, one expects this value to yield a fair approximation for c(¢)*

c(e) ~c,. (15)
The aforementioned remarks on the existence of a cut-off frequency affect the analysis of

*One, thus, neglects the slight attenuation in the interval 0 < <e¢ due solely to the scattering by the
inclusions.
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the experiments [4, 5] rather than the presented data. However, it will be shown that in
theoretical considerations. this fact has radical consequences.

Next let us deduce explicit expressions for attenuation and dispersion in the composite.
making use of the results of Section 2. Under the conditions of a dilute suspension and
the Rayleigh frequency region, the attenuation due to scattering (see eqn 10) is given by
Yamakawa[17] as follows (K,a < 1; Kza < 1)

2 (W)= Aw? (16)
where
A =3¢a* 2B + 2/3[1 + 2c /e p) 1B + 1/5[2 + 3(cy,/eip) 1B }(Act)
By = 1/3(34, — 32, + 2p1, — 2p0)/(4pty + 372+ 2u2)

B,
B,

1/3(1 — pyfpy)
—20/3p(py — ) (16p s + 67,5 + 1447 + 94 1)

I

with 4, 4 standing for the Lame’ parameters.
Invoking eqns (13) and (9). one finds

H{w) = mw + Aw? (18)
n(w) = colm + Aw?) (19)
for the interval
W= waicg<l.

Since no sharp resonances are present, the approximation given by Eq. 7 is valid to yield
for the same interval

dnlw) = —2¢cimew '+ Aw?) dw/n (20)
n(w)=1-=2cfm In{wie) + Alw> — 2)/3]/n @21

where n,(¢) = 1 was substituted on the basis of eqns (4) and (15). Thus, the low-frequency
approximation for the phase velocity, ¢(w). is given by

cw)={eg'=2[mIn(w )+ Ao’ —*)/3)n} . (22)
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Fig. 1. Wave attenuation in a composite, ¢ = 0.086.



Wave propagation in random particulate composites

clw)/c g

clw)/cq

115 T T T T T T T T
®m Refs. (4.5) ¢ =0 05
— Theory e = 0-0I5cm
6
ok € = 10 1/sec 4
105} 1
1-00 | T
1 {
o i ) D | 1 | 1 1 L
[} 02 04 06 0-8
ow/ g

Fig. 2. Wave dispersion in a composite, ¢ = 0.05.
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Fig. 3. Wave dispersion in a composite, ¢ = 0.086.
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Fig. 4. Wave dispersion in a composite, ¢ = 0.35.
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As expected, the logarithmic dependence appearing in eqn (22) indicates that ignoring
the cut-off frequency effect (¢ = 0) leads to the breakdown of the theory, confirming, thus,
the conclusion of Ref. [21] on inconsistency of eqn (13) with the linear theory of wave
propagation.

Comparisons between the experimental data (dilute mixture and the Rayleigh fre-
quency interval) and eqns (18) and (22) are shown in Figs. 1-4. A very satisfactory
agreement for attenuation, a(w), is obtained, as displayed in Fig. 1. The dispersion is
slight, as Figs. 2-4 show for different values of the volume fraction, ¢ = 0.05, 0.086 and
0.35. Computations confirmed the remark of Futterman on a slight correlation between
¢(w) and €. The values of c(w) computed for € = 10° sec~! were found to differ about 3%,
from those presented in Figs. 2-4, computed for ¢ = 108 sec~'.

Figure 4 needs the following explanations. For moderate magnitudes of the volume
fraction, such as ¢ = 0.35, the use of the result of Datta[18) is more justified than the use
of eqn (11), taken from(2]. In fact, as Fig. 4 shows, incorporation of the Ref. [18] result
makes the comparison more favorable.

4. CONCLUSIONS

A new method was presented for analysis of disordered viscoelastic composites which
yields a convenient means for the extension of static results to the dynamic case. The
method consists of computation of the losses due to scattering as well as a viscoelastic
losses and subsequent application of the Kramers—Kronig relationships to derive the wave
speed, c(w). The possibility of incorporating any theoretical or empirical value for the
non-dispersive velocity ¢, is an advantage of the method. The method, along with the
Futterman law of viscoelastic losses, provides the results matching experimental data on
wave propagation in epoxy-glass particulate composites. It is believed that a good
agreement between frequency-dependent data for the theory and experiments is demon-
strated here for the first time.
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